Home Search Collections Journals About Contact us My IOPscience

Magnetic ordering affected by multipolar interactions in $Ho_{1-x}Tb_xB_2C_2$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2193 (http://iopscience.iop.org/0953-8984/15/28/350)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:17

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) S2193-S2196

Magnetic ordering affected by multipolar interactions in $Ho_{1-x}Tb_xB_2C_2$

K Ido, A Tobo, K Ohoyama, H Onodera and Y Yamaguchi

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2193

Abstract

We performed a powder neutron diffraction experiment on Ho_{1-x}Tb_xB₂C₂ (x = 0.2, 0.4, 0.6 and 0.8) to compare the magnetic properties of HoB₂C₂ and TbB₂C₂. It is found that the magnetic satellite peaks described as $k = [1 \pm \delta_1, \pm \delta_1, \pm \delta_2]$ get larger even in the (antiferromagnetic + antiferroquadrupolar) phase for x = 0.2, 0.4 and 0.6. And a satellite peak around 000 newly emerges for x = 0.4, 0.6 and 0.8.

1. Introduction

HoB₂C₂ undergoes an antiferromagnetic (AFM) ordering at $T_N = 5.9$ K and an antiferroquadrupolar (AFQ) ordering at $T_Q = 4.5$ K [1]. The magnetic structure in the AFM phase is a long-periodic one described by a propagation vector $\mathbf{k} = [1 \pm \delta_1, \pm \delta_1, \pm \delta_2]$ ($\delta_1 = 0.11, \delta_2 = 0.04$). And magnetic diffuse components around \mathbf{k} are observed [2]. TbB₂C₂ only undergoes an AFM ordering at $T_N = 21.7$ K [3]. An AFQ ordering transition is induced by external magnetic fields. The propagation vectors in the main AFM component are described as $\mathbf{k}_0 = [0, 1, 1/2], \mathbf{k}_1 = [0, 0, 1/2]$ and $\mathbf{k}_2 = [1 \pm \delta, \pm \delta, 0]$ ($\delta = 0.13$) [3]. And the diffuse components are also observed around \mathbf{k}_2 -vector satellite peaks like for the AFM phase of HoB₂C₂.

The anomalous magnetic properties in the AFM phases of HoB₂C₂ and TbB₂C₂ are quite similar as regards the long-periodic magnetic structure and diffuse component. These magnetic anomalies are possibly due to the influence of quadrupolar interactions. Therefore we carried out specific heat measurements on Ho_{1-x}Tb_xB₂C₂ to compare the interactions in the AFM phases of HoB₂C₂ and TbB₂C₂. Our result is that T_Q is hardly dependent on the concentration from x = 0.0 to 0.6 while the peak height of the specific heat at T_Q gradually decreases [4]. This result indicates that the Tb³⁺ ions seem to be cooperative with the AFQ ordering in HoB₂C₂, although TbB₂C₂ itself shows no AFQ ordering under zero magnetic field. It seems that the Tb³⁺ ions play some role in the AFQ ordering in HoB₂C₂. Then we a performed powder neutron diffraction experiment on Ho_{1-x}Tb_xB₂C₂ to study the effect of Tb³⁺ substitution on the (AFQ + AFM) ordering phase in HoB₂C₂.

Figure 1. Powder neutron diffraction patterns for $Ho_{1-x}Tb_xB_2C_2$ at 2.2 K.

2. Experimental details

We synthesized $\text{Ho}_{1-x}\text{Tb}_x^{11}\text{B}_2\text{C}_2$ (x = 0.2, 0.4, 0.6 and 0.8) by the conventional argon arc technique. To ensure homogeneity, each ingot was turned over and remelted several times. 99.95% enriched ¹¹B was used instead of natural B to decrease the neutron absorption by the samples. We performed neutron powder diffraction experiments on the powder diffractometer for high efficiency and high resolution measurements HERMES, installed at the JRR-3M reactor in Japan [5].

3. Results and discussion

Figure 1 shows powder neutron diffraction patterns for x = 0.2, 0.6 and 0.8 at 2.2 K. The crystal structures of the samples are confirmed to be LaB₂C₂-type tetragonal ones. The diffraction pattern for x = 0.2 is nearly the same as that of HoB₂C₂, which is described by the four propagation vectors $k_0 = [1, 0, 0]$, $k_1 = [0, 1, 1/2]$, $k_2 = [0, 0, 1/2]$ and $k_3 = [0, 0, 0]$ [2]. However, satellite peaks described by $k = [1 \pm \delta_1, \pm \delta_1, \pm \delta_2]$ emerge in x = 0.2. Moreover, the intensities of the satellite peaks for x = 0.6 become much larger than those for x = 0.2, while the original Bragg peaks described by k = [1, 0, 0] almost disappear for x = 0.6. Not only the M100 satellite peaks but also the M101, M210 and M211 satellite peaks become sharper and clearer as x increases. For x = 0.8 at 2.2 K, all satellite peaks become small. The

Figure 2. Integrated intensities of M100⁻ for x = 0.2, 0.6 and 0.8.

powder pattern for x = 0.8 at 2.2 K is nearly the same as that of the AFM phase of TbB₂C₂ which is described mainly by three propagation vectors $k_0 = [1, 0, 1/2]$, $k_1 = [0, 0, 1/2]$ and $k_2 = [1 \pm \delta, \pm \delta, 0]$. This is consistent with the results of specific heat measurements in showing that the ground state phase of Ho_{1-x}Tb_xB₂C₂ is (AFQ + AFM) for x = 0.2-0.6 and AFM for x = 0.8.

Specific heat measurements clarified that the ground state is the (AFQ + AFM) phase for x = 0.0-0.6 for the Ho_{1-x}Tb_xB₂C₂ system. The propagation vectors for the (AFQ + AFM) phases of HoB₂C₂ and TbB₂C₂ were reported to be a combination of $k_0 = [1, 0, 0]$, $k_1 = [0, 1, 1/2]$, $k_2 = [0, 0, 1/2]$ and $k_3 = [0, 0, 0]$. Nevertheless, the magnetic structure of the (AFQ + AFM) phase of HoB₂C₂ is described by four commensurate propagation vectors; those for x = 0.2 and 0.6 are long-periodic ones because $k_0 = [1, 0, 0]$ is transformed gradually to the incommensurate vector $k = [1 \pm \delta_1, \pm \delta_1, \pm \delta_2]$. This indicates that the magnetic structure of the (AFQ + AFM) phase of HoB₂C₂ changes to a longitudinal one on substituting Tb³⁺ for Ho³⁺. The long-periodic magnetic component becomes larger as x increases and it has its maximum at x = 0.6.

Figure 2 shows the temperature dependence of the integrated intensities of M100⁻. The instrumental factors which were estimated from the 111 nuclear Bragg peak were corrected. In the correction, we took account of the difference in nuclear scattering length b_n between Ho and Tb for each compound. As T/T_N decreases, the intensity for x = 0.2 increases gradually and decreases below $T/T_N = 0.7$. This behaviour is nearly the same as that for HoB₂C₂. However, the intensity for x = 0.6 continues to increase down to the lowest temperature, which indicates that the Tb³⁺ substitution enhances the longitudinal magnetic component under T_N .

A 000 satellite peak is newly discovered for x = 0.4, 0.6 and 0.8. This satellite peak remains even above T_N for each sample. This 000 satellite possibly originates from an impurity phase, but at present we have no information about this.

The diffuse component around $\mathbf{k} = [1 \pm \delta_1, \pm \delta_1, \pm \delta_2]$ satellite peaks is difficult to observe in powder patterns of Ho_{1-x}Tb_xB₂C₂. Single-crystal neutron scattering experiments on Ho_{1-x}Tb_xB₂C₂ are now in progress in order to make precise observations of diffuse components.

References

- [1] Onodera H et al 1999 J. Phys. Soc. Japan 68 2526
- [2] Ohoyama K et al 2000 J. Phys. Soc. Japan 69 3401
- [3] Kaneko K *et al* 2001 J. Phys. Soc. Japan **70** 3112
- [4] Ido K *et al* 2002 *J. Phys. Soc. Japan (Suppl.)* **71** 83
 [5] Ohoyama K *et al* 1998 *Japan. J. Appl. Phys.* **37** 3319